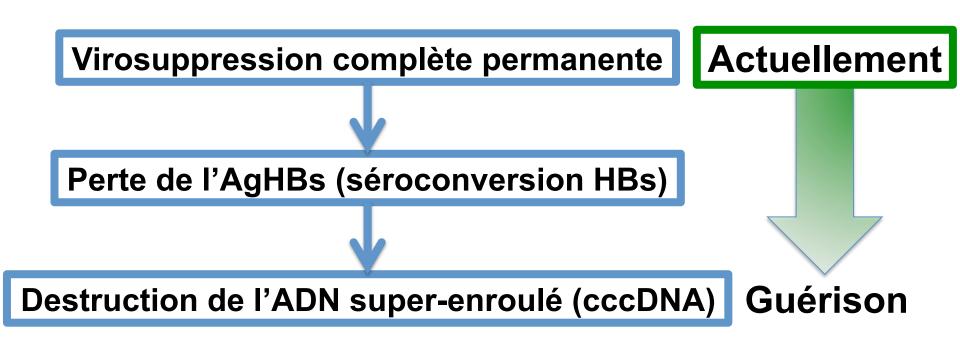


Traitement par analogues de 2^{ème} génération (Tenofovir ou Entécavir)

≈100%

ADN-VHB < 10 – 15 UI/ml ↓ activité histologique

↓ fibrose
Régression cirrhose


Prévention des complications

Temps de traitement par analogues

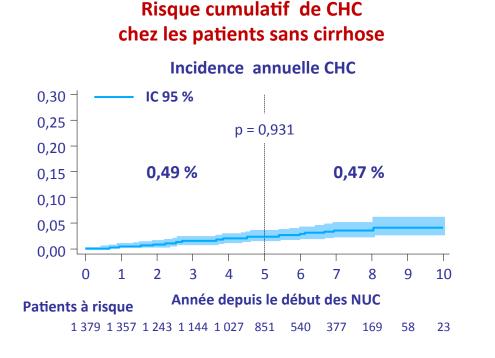
- Séroconverion HBe
- Séroconversion HBs
- Titrage AgHBs
- cccDNA

- 1. Observance
- 2. Tolérance à long terme

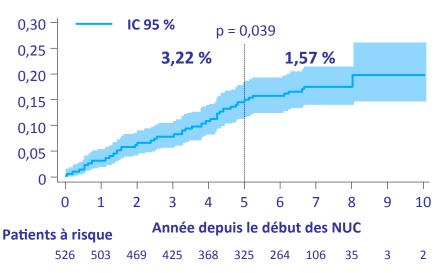
"HBV cure"

Le risque de CHC diminue avec le temps après virosuppression du VHB (1)

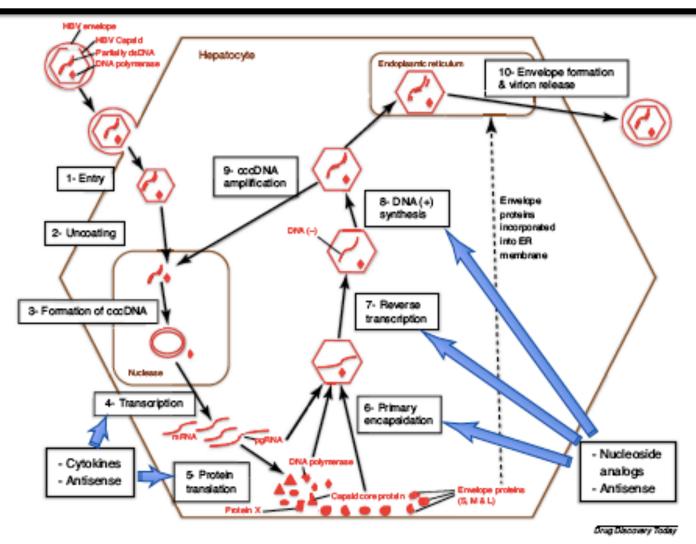
 Cohorte européenne : 1 951 patients VHB avec ou sans cirrhose compensée sous TDF ou ETV, sans CHC à l'inclusion, non co-infectés par VHD/VIH/VHC



- → Le risque de CHC décroit après les 5 premières années de virosuppression notamment chez les patients ayant initialement une cirrhose compensée
- Un âge ≥ 50 ans et un taux de plaquettes bas sont les deux facteurs prédictifs de CHC


Le risque de CHC diminue avec le temps après virosuppression du VHB (2)

 Cohorte européenne : 1 951 patients VHB <u>+</u> cirrhose compensée sous TDF ou ETV, sans CHC à l'inclusion, non co-infectés par VHD/VIH/VHC


Risque cumulatif de CHC chez les patients avec cirrhose

→ Après 5 ans de virosuppression, le risque de CHC devient similaire entre les patients ayant initialement une cirrhose et ceux sans cirrhose

Cycle réplicatif du VHB et mode d'action des analogues

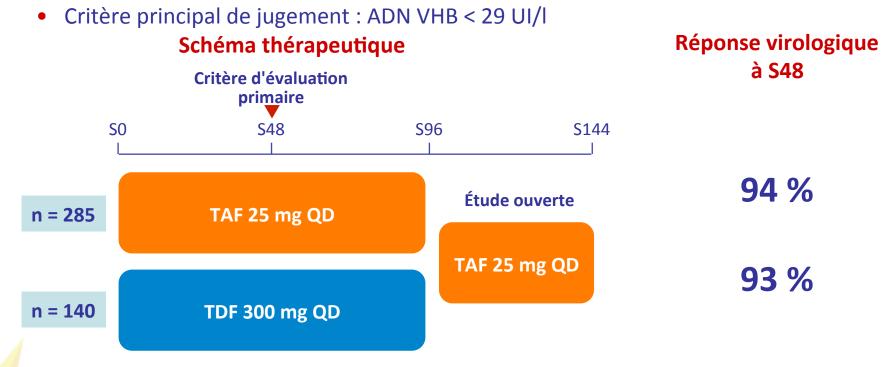
Ahmed et al. Drug Discover Today 2015

1ère étape : des nouveaux analogues

Nucleoside Analogues - Interfere with the viral DNA polymerase enzyme used for hepatitis B virus reproduction				
Epivir-HBV (Lamivudine)	Inhibits viral DNA polymerase	GlaxoSmithKline, Philadelphia, PA	FDA Approved 1998	
Hepsera (Adefovir Dipivoxil)	Inhibits viral DNA polymerase	Gilead Sciences, Foster City, CA	FDA Approved 2002	
Baraclude (Entecavir)	Inhibits viral DNA polymerase	Bristol-Myers Squibb, Princeton, NJ	FDA Approved 2005	
Tyzeka (Telbivudine)	Inhibits viral DNA polymerase	Novartis, Switzerland	FDA Approved 2006	
Viread (Tenofovir)	Inhibits viral DNA polymerase	Gilead Sciences, Foster City, CA	FDA Approved 2008	
Clevudine (L-FMAU)	Inhibits viral DNA polymerase	Bukwang, South Korea Eisai, Japan	Approved S. Korea 2006 (Levovir)	
Tenofovir alafenamide (TAF)	Prodrug of Tenofovir	Gilead Sciences, Foster City, CA	Phase III	
CMX157	Prodrug of Tenofovir	ContraVir Pharmaceuticals, Edison, NJ	Phase II	
AGX-1009	Prodrug of Tenofovir	Agenix, Australia	Phase I, China	

1ère étape : des "nouveaux" analogues

 Les génériques : enfin ! (ténofovir et entécavir)


Le TAF

Traitement de l'hépatite B par tenofovir alafenamide (TAF) chez les patients AgHBe- (1)

Efficacité

- But : évaluer l'efficacité et la tolérance du TAF versus tenofovir (phase 3 en double-aveugle)
- Patients AgHBe- avec ADN VHB ≥ 20 000 UI/ml, ALAT > 60 UI/l (hommes) et > 38 UI/l (femmes)

Même efficacité virologique entre TAF et tenofovir

Traitement de l'hépatite B par tenofovir alafenamide (TAF) chez les patients AgHBe- (2)

Tolérance générale

Tolérance rénale

Effets indésirables EI (%)	TAF (n = 285)	TDF (n = 140)	Paramètres	TAF	TDF	р
Au moins un El	210 (74)	99 (71)	Modification de la créatinine (mg/dl)	0,012 (0,09)	0,02 (0,1)	0,32
El grade 3-4	12 (4)	6 (4)	creatiline (mg/ul)			
El sévère	14 (5)	9 (6)	ΔFGR (ml/mn)	-1,4 (12,7)	-4,7 (12)	0,004
Arrêt pour El	3 (1)	2 (1)	Absence de			
Décès	0	1	protéinurie (%)	81	81	0,9

Tolérance osseuse

- Diminution de plus de 3 % de la densité osseuse à la semaine 48
- Rachis: 22 % (TAF) versus 39 % (TDF), p < 0,001
- Hanches: 10 % (TAF) versus 33 % (TDF), p < 0,001

Meilleure tolérance du TAF

Traitement de l'hépatite B par tenofovir alafenamide (TAF) chez les patients AgHBe+ (1)

- But : évaluer l'efficacité et la tolérance du TAF versus tenofovir (phase 3 en double-aveugle)
- Patients AgHBe+ avec ADN VHB ≥ 20 000 UI/ml, ALAT > 60 UI/l (hommes) et > 38UI/l (femmes)
- Critère principal de jugement : ADN VHB < 29 UI/I

Schéma thérapeutique Critère principal S0 S48 S96 S144 TAF 25 mg par jour Étude ouverte TAF 25 mg par jour n = 292 TDF 300 mg par jour

Réponse virologique à S48

	TAF	TDF	р
ADN < 29 UI/ml (%)	64	67	0,25
Séroconversion HBe (%)	10	8	0,32
Perte AgHBs (n)	4	1	0,52
Séroconversion HBs (n)	3	0	0,22

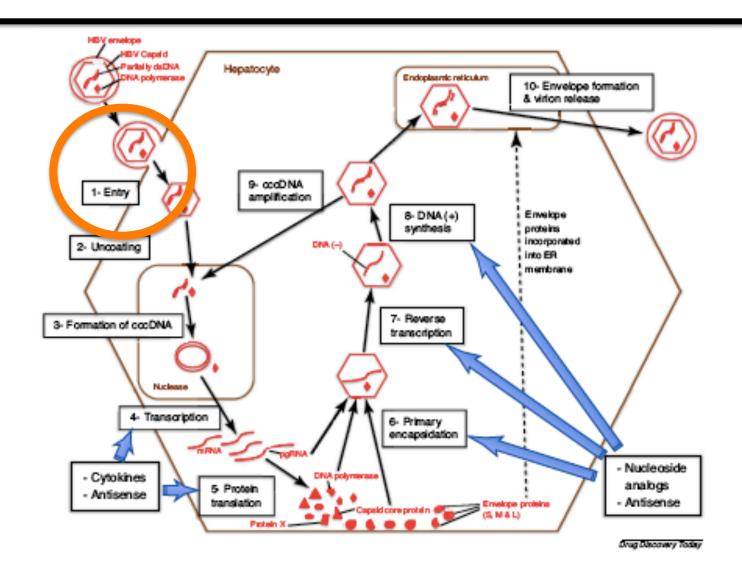
Même efficacité virologique entre TAF et tenofovir

Traitement de l'hépatite B par tenofovir alafenamide (TAF) chez les patients AgHBe+ (2)

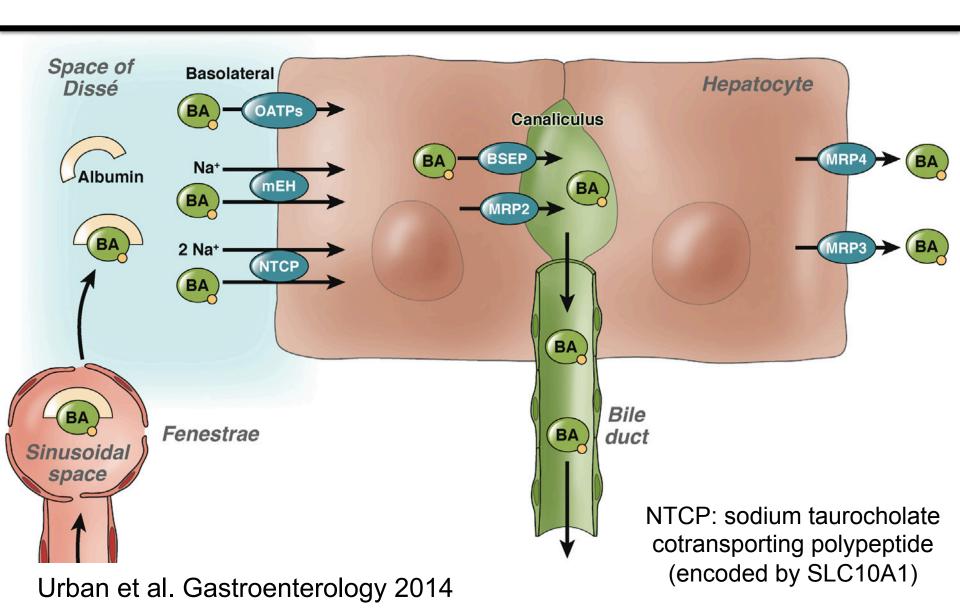
Tolérance

Effets indésirables El (%)	TAF (n = 581)	TDF (n = 292)
Au moins un El	399 (69)	192 (66)
El grade 3-4	27 (5)	11 (4)
Arrêt pour El	6 (1)	3 (1)
Décès	1	0

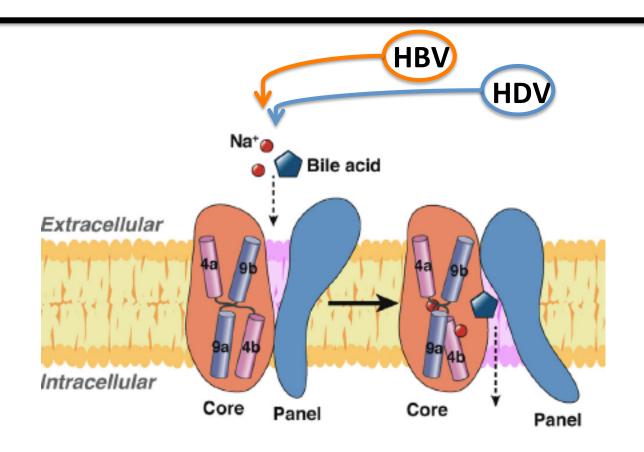
Tolérance rénale

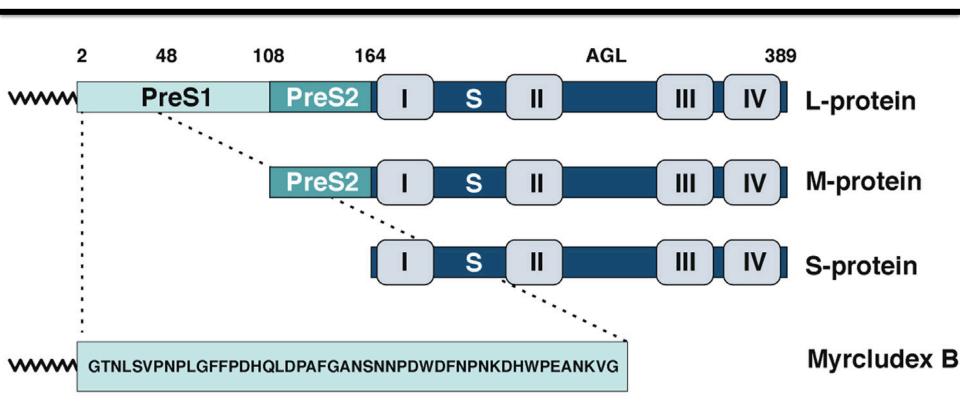

Paramètres	TAF	TDF	р
Evolution créatinine (mg/dl)	0,009 (0,124)	0,026 (0,095)	0,02
Evolution eFGR (ml/mn)	-0,3 (14,5)	-4,7 (13,5)	< 0,001
Absence de protéinurie (%)	73	77	0,21

Tolérance osseuse

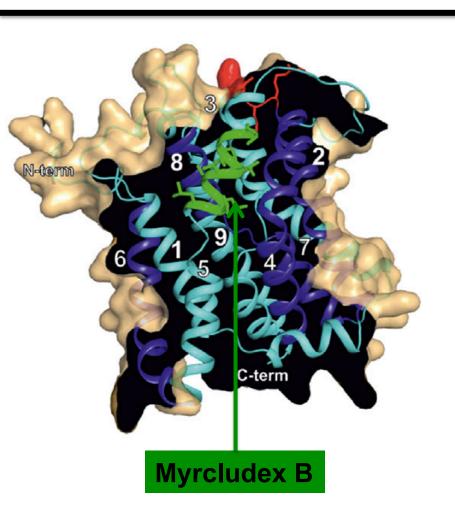

- Diminution de plus de 3 % de la densité osseuse à la semaine 48
- Rachis: 18 % (TAF) versus 38 % (TDF), p < 0,001
- Hanches: 8 % (TAF) versus 24 % (TDF), p < 0,001

→ Meilleure tolérance du TAF que du tenofovir à un an

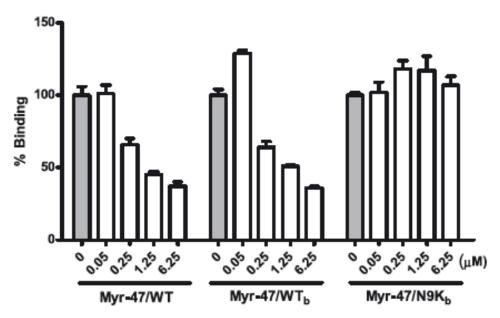

2ème étape : d'autres cibles du cycle


Absorption of conjugated Bile Acid

NTCP and NTCP-mediated bile salt transport and HBV preS binding sites



NTCP inhibition


Myrcludex B: A peptide that mimics the myristoylated N-terminal 47 aa of the HBV L protein inhibits HBV by inactivating the receptor function of NTCP

NTCP inhibition

N-terminal myristoylated peptide corresponding to amino acids (aa) 2–48 of the pre-S1 domain of the L protein: block HBV and HDV infections of hepatocytes

Inhibition of HDV binding

Yan et al. eLife 2012

Urban et al. Gastroenterology 2014

3ème étape : stimuler l'immunité

- But : perte de l'AgHBs et apparition des anticorps anti-HBs (= séroconversion HBs)
- Conséquences : arrêt des traitements par analogues (et meilleur contrôle de la maladie)
- Comment:
 - Interféron
 - Immunomodulateurs
 - Vaccins thérapeutiques
 - Autres...

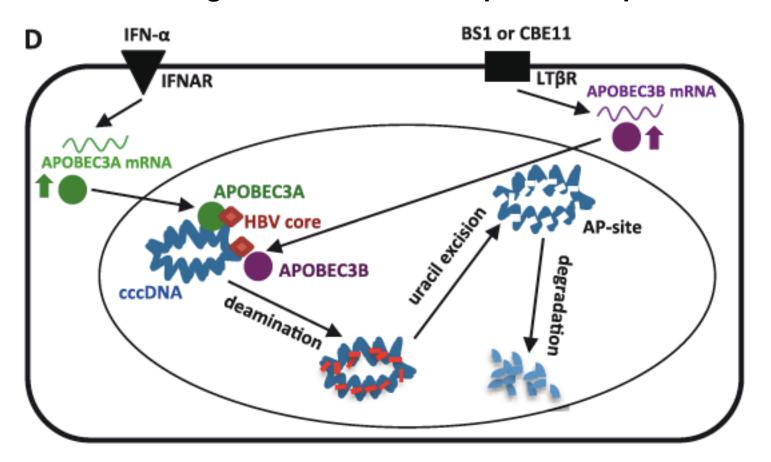
Exemple: étude PEGAN (ANRS HB-06)

- 185 patients AgHBe-, ADN VHB indétectable sous analogues depuis 12 mois
- Stratification selon le titre de l'AgHBs
- Randomisation : PEG-IFNα-2a (180 µg/sem) pendant 48 semaines vs. rien

Résultats à S48	Analogues	PEG-IFN + analogues	р
Perte AgHBs (ITT)	1/93 (1 %)	7/90 (8 %)	0,0327
Perte AgHBs chez patients ayant eu une dose de PEG-IFN	1/93 (1 %)	7/85 (8 %)	0,0286
Perte AgHBs chez les patients ayant terminé le suivi	1/91 (1 %)	7/82 (9 %)	0,0276

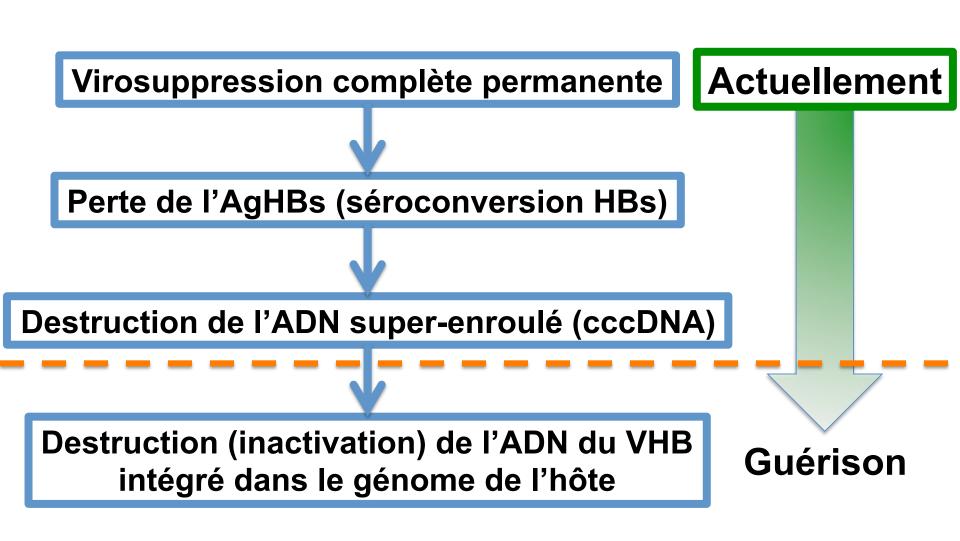
Bourlière et al. AASLD 2014

Séroconversion HBs


```
AgHBs+ / Ac. anti-HBs - / Ac. anti-HBc + 

→ AgHBs - / Ac. anti-HBs + / Ac. anti-HBc +
```

- Permet d'arrêter le traitement par analogue
- Meilleur contrôle immuno-virologique de la maladie
- Mais persiste de l'ADN du VHB dans le noyau sous forme de cccDNA
 - Mise en évidence directe : PBH
 - Mise en évidence indirecte : possibilité de réactivation sous immunosuppresseurs puissants (Rituximab : antiCD20)


4ème étape : s'attaquer au cccDNA

Modélisation de la dégradation du cccDNA par IFN ou par la voie LTβR

Lucifora et al. Science 2014

"HBV cure"

« HBV cure » en pratique

 Séroconversion HBs (= perte de l'AgHBs ± apparition d'anticorps antiHBs)

- 🔰 risque résiduel
- Arrêt du traitement par analogue